“Non-invasive” brain stimulation is not non-invasive

نویسندگان

  • Nick J. Davis
  • Martijn G. van Koningsbruggen
چکیده

INTRODUCTION The functions of the healthy brain can be studied in two main ways. Firstly, the changes in the brain’s state can be measured using techniques such as EEG or functional MRI. Secondly, the activity of the brain can be disrupted through the use of brain stimulation. The famous experiments of Wilder Penfield and colleagues in the 1950s showed the power of brain stimulation in people whose brain was exposed in surgery, and highlighted the possibility of inducing changes in the brain’s state to demonstrate the involvement of specific brain areas in particular functions (Jasper and Penfield, 1954). Two main techniques are available for human brain stimulation: transcranial magnetic stimulation (TMS) and transcranial current stimulation (tCS). More recently, it has been suggested that TMS and tCSmight be used to enhance brain function, as well as to disrupt activity. These techniques have collectively become known as “non-invasive brain stimulation.” We argue that this term is inappropriate and perhaps oxymoronic, as it obscures both the possibility of sideeffects from the stimulation, and the longer-term effects (both adverse and desirable) that may result from brain stimulation. We also argue that the established tendency for the effects of TMS and tCS to spread from the target brain area to neighboring areas is in itself contrary to the definition of non-invasiveness. We argue that the traditional definition of an invasive procedure, one which requires an incision or insertion in the body, should be re-examined, and we propose that it be widened to include targeted transcutaneous interventions. TYPES OF BRAIN STIMULATION An electric current travelling through a coiled wire creates a magnetic field. This property is used in TMS to create brief magnetic pulses which easily traverse the skull and other matter overlaying the brain. The pulses generate electrical potentials in the brain, depolarizing neurons and thereby triggering action potentials (Di Lazzaro et al., 2004). A single pulse of TMS will have two effects: firstly the generation of action potentials in the targeted brain areas underlying the coil; secondly a refractory “silent period” in those same cells as the ion balance is restored. While the effects of a single TMSmay only last on the order of a few milliseconds, multiple pulses may induce long term potentiation or depression in the target cells. For example, trains of pulses delivered at 1Hz result in reduced excitability in the target area for a prolonged period of time, on the order of tens of minutes after the end of the stimulation. A recent development has been the use of rapid bursts of pulses such as thetaburst stimulation (TBS), which can have opposing effects on excitability depending on the temporal pattern of the bursts (Huang et al., 2005). TMS may be used either “online,” to affect the brain during a task, or “offline,” to compare task performance after vs. before longer periods of stimulation. tCS is a term that covers several techniques, principally involving direct or alternating current (tDCS or tACS). In a typical tDCS experiment, the participant performs a task to establish a baseline performance level. Then a pair of electrodes is placed on the head, one (or both) of which overlie a target brain area. The experimenter delivers a small electrical current for around 10–20min. Following this the participant performs the task a second time to establish whether the stimulation has had an effect on behavior. The effect depends on a number of factors, including current amplitude and duration (higher currents delivered for more time usually induce a greater effect), the polarity of the electrode over the target area (typically the negative electrode, or cathode, will worsen performance while the positive, anodal, electrode will enhance it), and the brain area and task under study (Nitsche and Paulus, 2000, 2001). tACS is less well studied, however the technique offers the possibility of exploring the casual involvement not only of a target brain area, but also of a particular frequency band. For example the beta range (15–35Hz) is known to be associated with human motor control, however it has only recently been possible to show the causal involvement of beta frequencies in maintaining motor state (Pogosyan et al., 2009; Fuerra et al., 2011). These latter studies used tACS to increase the power of the beta band while the motor system was under study, giving somewhat contradictory results (Davis et al., 2012). The timescale over which the effects of brain stimulation are seen can vary from milliseconds to weeks. At the briefest level, a single pulse of TMS lasts for 100–200μs, during which time an electric field is induced in the target area. This is enough to generate action potentials in these target cells, and to induce a refractory silent period following the initial burst. Conversely the instantaneous effects of tCS are under-explored, and much of our knowledge of the effects of the electric field on the brain comes from modeling

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-Invasive Brain Stimulation for Enhancement of Corticospinal Excitability and Motor Performance

During the past .. years, non-invasive .rain stimulation has .ecome an emerging .eld in clinical neuroscience due to its capability to transiently modulate corticospinal excitability, motor and cognitive functions. .hereas transcranial magnetic stimulation has .een used e.tensively since more than t.o decades ago as a potential .neuromodulator., transcranial current stimulation .tCS. has more r...

متن کامل

Non Invasive Brain Stimulation by Transcranial Magnetic Stimulation (TMS): Principles and Applications

Magnetic brain stimulation used as a method of psychological interventions in the treatment of diseases. This method functions used in the treatment of clinical disorder such as speech and movement disorders caused by stroke, tinnitus, Parkinson's disease, nervous tics. Applications in the field of psychological therapy, it is possible to stimulate specific brain area involved in certain mental...

متن کامل

BRAIN MAPPING IN NEUROSURGERY

Background and Aim: Brain mapping is a study of the anatomy and function of the CNS (central nervous system). Brain mapping has many techniques and these techniques are permanently changing and updating. From the beginning, brain mapping was invasive and for brain mapping, electrical stimulation of the exposed brain was needed. However, nowadays brain mapping does not require electrical stimula...

متن کامل

Non-invasive Brain Stimulation and Prism Adaptation in Art Constructive Errors of Painting

Introduction: This study aimed to investigate the influence of neglect and the effect of Prism Adaptation (PA) combined with continuous Theta-Burst Transcranial Magnetic Stimulation (cTBS) on the art constructive errors of painting rehabilitation of stroke patients with neglect. Methods: Fourteen patients with neglect and art constructive errors of painting secondary to stroke were randomly as...

متن کامل

Vagus nerve stimulation in the treatment of nervous system disease: a review article

The vagus nerve (VN), the longest cranial nerve and an essential part of the parasympathetic system, connects the central nervous system to respiratory, cardiovascular, immune, gastrointestinal, and endocrine systems and is involved in the maintenance of homeostasis by controlling these systems. Vagus nerve stimulation (VNS) is related to any method that would stimulate the vagal nerve via elec...

متن کامل

Binaural beat stimulation - a non-invasive method for inducing zebrafish growth

An initial experimental study was conducted to evaluate the effects of binaural beats on fish growth performance. A 90-day trial with four triplicate groups was conducted with 240 zebrafish, Danio rerio, under aquarium conditions. Binaural beat file complexes were played for each aquarium using computer controlled directional speakers for 0 min d-1(Control), 90 min d-1(Group 1), 180 min d-1 (Gr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2013